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Abstract. One disadvantage of conventional iris-loaded accelerating structures is the high ratio
of peak surface electric field to peak axial electric field.  It limits the maximum achievable
accelerating gradient to less than one half of the electric surface breakdown limit at the operating
frequency, if the required high power RF sources are always available.  Such high ratio of peak
surface electric field to peak axial electric field becomes a hurdle for realizing an accelerator
technology with very high accelerating gradient, which is very important for the next generation
linear collider.  One way to overcome this hurdle is to design a new structure that has a small
ratio of peak surface electric field to accelerating gradient, while the shunt impedance per unit
length r and Q do not scarify much.  We present a scheme with dielectric-loaded periodic
structures to achieve these objectives.  The analyses based on MAFIA simulations of such kind
of structure show that we can lower the peak surface electric field close to the accelerating
gradient with high acceleration efficiency that is measured by r/Q.  Meanwhile, the shunt
impedance and Q of such structure is comparable with conventional pure iris-loaded accelerating
structures.  Thus the maximum achievable accelerating gradient in dielectric-loaded periodic
structures can be at least the double of that of conventional iris-loaded accelerating structures.

I. INTRODUCTION

It is generally agreed that the next generation linear collider must use an affordable
and compact accelerator technology.  A very high axial peak electric field gradient can
certainly deliver the required energy to a particle within very short distance.  However,
the peak surface electric field is an important constraint in such high-energy
accelerating structure design.  In normal-conducting cavities, too large a peak surface
electric field can result in electric breakdown.  For conventional iris-loaded traveling-
wave accelerators, the typical ratio of peak surface electric field Es, which occurs at
the edges of irises, to the peak axial electric field Ez0 is generally greater than 2.  If the
peak surface electric field exceeds the breakdown limit at the operating frequency, it
can cause arcing damages to irises.  Thus the high ratio of peak surface electric field to
peak axial electric field is a hurdle for achieving high accelerating gradient.  Assuming
the availability of high power RF sources is not a problem here, the maximum
achievable accelerating gradient is always less than one half of the electric surface



breakdown limit at the operating frequency in a pure iris-loaded structure.  If the ratio
of Es/Ez0 can be reduced to about 1, without losing too much acceleration efficiency
that is measured by shunt impedance r and r/Q, the maximum achievable accelerating
gradient can be increased dramatically.  As a natural corollary, it is of great interest to
study some new structures that have lower ratio of Es/Ez0, and comparable shunt
impedance per unit length and r/Q with conventional iris-loaded accelerating
structures.

The advantages of using dielectric-lined circular waveguides as accelerating
structures have been discussed in many previous studies [1-4].  One distinguished
benefit is that the accelerating axial electric field is the maximum in such kind of
structure, while the peak surface electric field is zero.  Nevertheless, a good
accelerating structure requires the group velocity of TM01 mode less than 10 percent of
the speed of light in the free space.  Then we have to fill waveguides with high-
dielectric-constant ceramics.  One drawback of using high dielectric constant materials
is the largely increased peak surface magnetic field, which causes more power
dissipation on the wall.  Thus the higher dielectric constant, the lower the quality of
factor Q of such structure.  In addition to this, dielectric ceramics with higher
dielectric constant are relatively more expensive and lossy.

Loading dielectric will change field distributions of waveguides.  Meanwhile, iris-
loaded structures can efficiently slow group velocity with very high Q.  Thus we may
be able to strike a balance between the advantages of these two kinds of structures by
using a combination of them with low-dielectric-constant materials.  Fig. 1 shows such
dielectric-iris-loaded structure.  Calculations of such structure will show that it can
significantly reduce the ratio of the peak surface electric field to the peak axial electric
field without scarifying much in shunt impedance per unit length r and r/Q.
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FIGURE 1.  Schematic drawing of dielectric-iris-loaded accelerating structure.

II. BASIC EQUATIONS

Our calculation will limit to X-band traveling-wave structures.  For X-band and
higher frequency band accelerators, traveling-wave structures are preferred to
standing-wave structures, because they are less expensive in fabrication, and high
power RF isolators or circulators that are necessary for standing-wave accelerators are
not currently available in X-band and higher frequency band.  As mentioned above,
periodic iris-loaded structures are viewed as arrays of pillboxes coupled through irises.
Such kind of standing-wave structure can be accurately calculated as a resonator using
electromagnetic field-solving codes such as eigenmode module of MAFIA, and
SuperFish.  Previous calculations of disk-loaded accelerating structures showed how



to obtain RF properties of traveling-wave structure from the calculation results of
standing-wave structures [5].  This conversion will be briefly visited in the following.

Space Harmonics, Standing and Traveling Waves

It is well known that the Ez of TM01 mode in the traveling-wave structures can be
expressed as:
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With Neuman boundary condition (ET=0), the axial electric fields of the standing
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where the factor of 2 comes from the summation of two traveling waves of amplitude
an.  This equation is also true to other field components.

Conversion from Standing Waves to Traveling Waves

Using E-module of MAFIA, one can calculate resonant frequencies, stored energies
and dissipated power of resonance modes in the cavities.  The field components can
also be extracted from such standing-wave simulation results.  If two traveling waves
of the proper phase add up to a standing wave (Equation (3)), there must conversely be
two standing waves that add up to a traveling wave.  Assuming the first standing wave
is A

r
, and the second standing wave B

r
 is shift A

r
 to the left by d, one can have:
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Both of these standing waves are made up of one traveling wave going left and one
going right.  It is possible to add them with the proper phases to have the traveling
waves going left canceled and those going right added.  Thus, we can obtain the
traveling wave field component in such structure.  This can be achieved by
multiplying A

r
 by )2/( 0 πβ −dje  and B

r
 by 2/πje .
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Substituting Equation (7) into (6), we can have
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Adding up the two equations in (8), we can have
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The amplitude and phase of the field components of traveling waves can be obtained
by the following equations:
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where A and B are functions of z.

Group Velocity

For practical cases where the dispersion is not too large, the energy velocity is
equal to the group velocity.  Thus the group velocity of a traveling wave can be
calculated from the energy velocity Vg=P/WTW, where P the time average power flow
and WTW is the time average energy stored per unit length.  For a given z, we have:
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Power And Acceleration Efficiency Figures of Merit

To discuss the design of dielectric loaded accelerating structures, it is helpful to
introduce some commonly used figures of merit for accelerating structures and some
important considerations in dealing with design issues.  Then we can optimize our
design choices according to these parameters.  Furthermore, the new accelerator
technology based on dielectric loaded structure can be merited quantitatively.  Here
we present the definitions of these parameters for standing-wave structures to clarify



the physics contained within them.  These figures of merit of traveling-wave
accelerating structures can be derived from those of standing-wave structures.
Moreover, our calculations of the traveling-wave structures were obtained from the
results of the standing-wave cavities.

There are several figures of merit that are commonly used to characterize
accelerating structures.  Some of these depend on the power that is dissipated because
of electrical resistance in the walls of the cavities.  The well-known quality factor of a
resonator is one of them.  It is defined in terms of the average power loss P as
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The shunt impedance, a figure of merit that is independent of the excitation level of
the cavity and measures the effectiveness of producing an axial voltage V0 for a given
power dissipated, is defined by
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In an accelerating structure we are really more interested in maximizing the particle
energy gain per unit power dissipation.  The energy gain of an arbitrary particle with
charge q traveling through the gap on axis of a standing-wave cavity is
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for the given accelerating gap shown in Fig. 2.1, and the electric field on the axis
experienced by this particle with velocity v as
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field relative to the crest is φ.
The use of a common trigonometric identity allows us to write the energy gain as
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where V0 is an axial RF voltage, defined by
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The transit-time factor T is defined by
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The phase φ=0 if the particle arrives at the origin when the field is at a crest.  It is
negative if the particle arrives at the origin earlier than the crest, and positive if it
arrives later.  Maximum energy gain occurs when φ=0, which is often the choice for
relativistic electrons.  The phase and the transit-time factor depend on the choice of the
origin.  It is convenient to simplify the transit-time factor, and remove its dependence



on the phase, by choosing the origin at the electrical center.  E(z) is usually
approximately an even function about a geometric center of the gap.  We will choose
the origin at the electrical center of the gap, then
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When E(z) is an even function about the geometric center of the gap, the electrical
center and the geometric center coincide.  The transit-time factor simplifies to
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The transit-time factor expression in this equation is the average of the cosine factor
weighted by the field.  The transit-time factor increases when the field is more
concentrated longitudinally near the origin, where the cosine factor is largest.  In most
practical cases the change of particle velocity in the gap is small compared to the
initial velocity.  If we ignore the velocity change, we have
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where β=v/c and βλ is the distance the particle travels in an RF period.  Then, the
simplified form of the transit-time factor most often used is defined by
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The average axial electric-field amplitude is defined by E0=V0/L, where V0 is the
voltage gain that would be experienced by a particle passing a constant dc field equal
to the field in the gap at time t=0.  The accelerating gradient is the quantity E0T.  In
terms of E0, the energy gain can be expressed by the Panofsky equation as

LTqEW φcos0=∆ (23)
The physics contained within the transit-time factor is that the energy gain of a

particle in a harmonically time-varying field is always less than the energy gain in a
constant dc field equal to that seen by the particle at the center of the gap.  The transit-
time factor T is the ratio of the energy gained in the time-varying RF field to that in a
dc field of voltage V0cosφ.

From the above, it is clear that the peak energy gain of a particle occurs when φ=0
and is ∆Wφ=0=qV0T.  The effective shunt impedance of a cavity is defined by
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This parameter in megohms measures the effectiveness per unit power loss for
delivering energy to a particle.  For a given field both V0=E0L and P increase linearly
with cavity length, as do both r and rs.  For long cavities we often use a figure of merit
that is independent of both the field level and the cavity length.  Thus the shunt
impedance per unit length Z is expressed as
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Similarly, the effective shunt impedance per unit length ZT2 is
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Z and ZT2 are usually tens of megohms per meter.  On of the main objectives in
accelerating cavity design is to choose the geometry to maximize effective shunt
impedance per unit length.  This is equivalent to maximizing the energy gain in a
given length for a given power loss.

Another useful figure of merit is the ratio of effective shunt impedance to Q, often
called r over Q,
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r/Q measures the efficiency of acceleration per unit stored energy at a given
frequency.  The effective shunt impedance per unit length is often used for r over Q,
instead to quote the ZT2/Q.  These ratios are useful, because they are a function only
of the cavity geometry and are independent of the surface properties that determine the
power losses.

The multi-cavity traveling-wave structure can be viewed as a transmission line.  If
the energy stored in cell #k is Uk, then the energy stored per unit length at z=zk=(k-1)L
is given by u(zk)=Uk/L, with L the cell length.  The power flowing past the point z is
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with Vg the local group velocity.  In steady-state the energy density stored in one cell
is constant in time, and thus
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where Qw is the wall Q of a single cell.  The power flowing into the cell from the left
is P-, and the power flowing out is P+.  Thus,

ww Q
uL

Q
U

dz
dP

LPP 00 ωω
==−≈− +− (30)

or

)(0 uV
dz
d

Q
u

dz
dP

g
w

=−=
ω

(31)

The structure we are studying here has the strictly periodic geometry.  It forms a
constant impedance structure.

The shunt impedance per unit length can be expressed as [6]:
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where G is the accelerating gradient, usually the peak axial electric field Ez0 in
traveling-wave accelerating structures.  It is because that a particle should locate at a
crest of the field and synchronizes with the wave propagation to obtain the maximum
energy gain in a traveling-wave structure, and the peak energy gain of a particle is



∆Wφ=0=qEz0L.  Consequently, the effective shunt impedance of a traveling-wave
structure is the same as its shunt impedance.

One can also calculate the shunt impedance of a traveling-wave structure from the
shunt impedance of the corresponding standing-wave structure [5].  The shunt
impedance per unit length of a traveling-wave structure is twice the effective shunt
impedance

22 TZZ SWTW = (33)

III. CALCULATION RESULTS

Here we are only interested in 2π/3 mode of the propagated wave, whose
wavelength is equal to the total length of 3 cells when the phase velocity is the speed
of light, because it has the maximum shunt impedance.  First, we calculated a
resonator with 3 cells with (Neuman boundary Et=0) using Eigenmode module of
MAFIA.  The field solutions and mesh coordinates can be output to ASCII data files.
However, these data files are not ready for further calculations of the accelerator
parameters we need.  One post-processing program written in VC++ reads the field
solutions and mesh information, filtering out unnumerical symbols in the input data
files.  This post-processing program also carries out the conversion from standing-
wave solution to traveling-wave solution.

Fig. 3-5 show the plots of the amplitude and phase of Er, Ez and Bφ that are
obtained from the standing waves to traveling waves conversion in Equ. (10).  They
agree with the field characteristics of iris-loaded structures.
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FIGURE 2.  Er at r=0.001m in the traveling-wave dielectric-iris loaded structure.
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FIGURE 3.  Ez at r=0 in the traveling-wave dielectric-iris loaded structure.
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FIGURE 4.  Bφ at r=0.001m in the traveling-wave dielectric-iris loaded structure.



The electric field pattern of 2π/3 mode of the standing-wave dielectric-iris-loaded
structure is shown in Fig. 5.  This vector field plot is obtain from MAFIA simulation.
It is generally agreed that the standing-wave field plot is one snapshot of the traveling
wave at certain time t.

FIGURE 5.  Electric field pattern of 2π/3 mode in dielectric-iris-loaded accelerating structure.
We chose a fixed beam hole with a radius of 4mm that is close to the typical beam

hole size of NLC structures.  Then the calculations have been carried out with varying
the iris radius.  Fig. 6 shows the iris radius vs. group velocity with filling different
dielectric.  From these curves, we can know the group velocity is almost determined
by the size of iris instead of ceramic’s dielectric constant.  Fig. 7 illustrates this from
another angel.



I r i s  R a d i u s  v s .  G r o u p  V e l o c i t y  ( B e a m  H o l e  R a d i u s  a = 4 m m )

I r i s  R a d i u s / W a v e l e n g t h  ( λ )

0 . 1 6 0 . 1 8 0 . 2 0 0 . 2 2 0 . 2 4

V
g (c

)

0 . 0 0

0 . 0 2

0 . 0 4

0 . 0 6

0 . 0 8

0 . 1 0

0 . 1 2

0 . 1 4

0 . 1 6

0 . 1 8

0 . 2 0

ε r = 4

ε r = 6

ε r = 8

ε r = 1 0

FIGURE 6.  Iris Radius vs. Group Velocity for 2π/3 mode in dielectric-iris-loaded structure.
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FIGURE 7.  Dielectric constant vs. Group Velocity for 2π/3 mode in dielectric-iris-loaded structure.
A good accelerator usually needs a group velocity less than 10 percent of the speed

of light in free space.  However, there is not a universally applicable number on group
velocity.  In this case, the group velocity can be simply counted as a function of iris
radius.  We have to consider other parameters such as shunt impedance r and r/Q
before choosing the size of iris, because these parameters also vary with the iris radius.



Fig. 8 shows how the shunt impedance per unit length of such traveling-wave structure
is a function of iris radius and dielectric constant of filled ceramic.
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FIGURE 8.  Shunt impedance per unit length of 2π/3 mode in dielectric-iris-loaded structure.

It is clear to say that the lower dielectric constant ceramic filling, the higher the
shunt impedance per unit length.  Moreover, the larger the iris, the higher the shunt
impedance we have.  Here we have to make a tradeoff between the group velocity and
shunt impedance to reach an optimized iris radius.  However, how to do such
optimization is not an objective of this research.

Accelerators are also expected to have very high Q.  Thus a given RF source can
drive longer accelerating structures.  Fig. 9 shows how Q varies with iris radius and
dielectric constant.
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FIGURE 9.  Quality factor of 2π/3 mode in dielectric-iris-loaded structure.

We can see the quality factor of dielectric-iris-loaded structures varies in the similar
trend as the shunt impedance.  For a given group velocity, we should choose ceramic
with lower dielectric constant to have higher Q.

Another figure of merit of accelerating structure we should consider here is r/Q.  It
measures the acceleration efficiency for a given stored energy.
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FIGURE 10.  r/Q of 2π/3 mode in dielectric-iris-loaded structure.

The plot in Fig. 10 also shows ceramics with lower dielectric constant are preferred
for achieving higher r/Q.  When the size of irises is enlarged, the r/Q of such structure
gets closer and closer to dielectric-lined circular waveguides.  Considering achieving a
relatively slow group velocity, increasing iris radius is not a good choice to enhance
r/Q, because it causes faster group velocities.

The geometric parameters should be chosen with a comprehensive consideration to
balance the requirements of shunt impedance, r/Q, and group velocity.  We must take
into consideration one more figure of merit Es/Ez0.  Reducing this ratio is the major
drive for the studies of dielectric-iris-loaded structures.  It is of great importance to
know how the ratio of the peak surface electric field to the accelerating gradient varies
with the size of irises and dielectric constant of ceramics.  The plots of Es/Ez0 are
shown in Fig. 11.
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FIGURE 11.  Es/Ez0 of 2π/3 mode in dielectric-iris-loaded structure.

If the dielectric constant of ceramic is greater than 6, the ratio of Es/Ez0 can be
reduced dramatically with increasing dielectric constant.  For dielectric constant
materials with dielectric constant of 4, this ratio is reduced to less than 1.5.  However,
the amplitude of such change is small with varying the iris radius.  From the trend of
those curves in Fig. 11, we may draw a conclusion that Es/Ez0 may not be largely
reduced using ceramics with dielectric constant less than 4, although dielectric-iris-
loaded structures can certainly achieve less Es/Ez0 than conventional iris-loaded
structures.

An optimization procedure can be applied to determine the optimal choice of iris
radius and dielectric constant of ceramic to satisfy the requirements on Es/Ez0, group
velocity, shunt impedance, Q, and r/Q.  Here we only compared the calculations
already being made to pick one good choice.  For a given beam hole radius of 4mm,
the relatively good choice of iris radius and dielectric constant is listed in table 1.  The
corresponding accelerator parameters are also shown in this table.

TABLE 1.  One set of parameters of dielectric-iris-loaded structure (beam hole radius=4mm)
Dielectric
Constant

Iris Radius
(mm)

Es/Ez0 Shunt
Impedance

(MΩ/m)

Q r/Q (Ω/m) Group
Velocity

Vg (c)
6 5.5 1.1604 38.0633 4506 8446.873 0.089349



Comparing with NLC structure, the structure shown in table 1 has Es/Ez0 close to
unity but lower shunt impedance.  Meanwhile, r/Q is not dramatically lowered.  It
means this structure can have at least doubled accelerating gradient, but the efficiency
of acceleration to the power dissipation is lowered.  If we want to tolerate a little
higher Es/Ez0, the shunt impedance, Q and r/Q can be increased.  How to choose these
parameters depends on the design objectives.  However, this kind of dielectric-iris-
loaded structure can lower the ratio of peak surface electric field to peak accelerating
gradient without losing much in other merits of accelerators.

Fig. 12 shows the contour plots and surface plot of the field amplitudes in the three
cells of the dielectric-iris-loaded structure listed in table 1.  We can easily identify that
the peak surface electric field occurring at iris is very close to the peak axial electric
field.

FIGURE 12.  Traveling-wave electric field amplitude plots of 2π/3 mode in dielectric-iris-loaded
structure at t=0.

IV. CONCLUSION

The analyses on dielectric-loaded periodic accelerating structures showed that the
ratio of peak surface electric field to the maximum accelerating gradient in a traveling-
wave structure can be reduce to unity without scarifying much in shunt impedance per
unit length and quality factor.  In other words, if high power RF sources are available,
we can at least double the achievable accelerating gradient, comparing with that of
conventional iris-loaded structures.
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